Beyond the sky

Birth of the universe....

There are two main theory for birth of the universe.

  1. Big Bang Theory
  2. Steady State Theory

Most of the people know about the big bang theory, but it has many problems and difficulties to prove every topics about its own results. Scientist like Fred Hoyl and Jayant Narlikar are the supporter of Steady state theory. They have published a page for more details of it.

click : www.cosmologystatement.org

Big Bang Theory

In 1920,Edwin Hubble found that the galaxies in the universe are moving far to each other. Astronomers researched on this result and then concluded that.....

Approximately 13.7 billion years ago, the entirety of our universe was compressed into the confines of an atomic nucleus. Known as a singularity, this is the moment before creation when space and time did not exist. According to the prevailing cosmological models that explain our universe, an ineffable explosion, trillions of degrees in temperature on any measurement scale, that was infinitely dense, created not only fundamental subatomic particles and thus matter and energy but space and time itself. Cosmology theorists combined with the observations of their astronomy colleagues have been able to reconstruct the primordial chronology of events known as the big bang.

 

Quantum theory suggests that moments after the explosion at 10 -43 second, the four forces of nature; strong nuclear, weak nuclear, electromagnetic and gravity were combined as a single "super force"(Wald). Elementary particles known as quarks begin to bond in trios, forming photons, positrons and netrinos and were created along with their antiparticles. There are minuscule amounts of protons and neutrons at this stage; approximately 1 for every one billion photons, neutrinos or electrons (Maffei). The density of the Universe in its first moment of life is thought to have been 1094g/cm3 with the majority of this being radiation. For each billion pairs of these heavy particles (hadrons) that were created, one was spared annihilation due to particle-antiparticle collisions. The remaining particles constitute the majority of our universe today (Novikov).

During this creation and annihilation of particles the universe was undergoing a rate of expansion many times the speed of light. Known as the inflationary epoch, the universe in less than one thousandth of a second doubled in size at least one hundred times, from an atomic nucleus to 1035 meters in width. An isotropic inflation of our Universe ends at 10-35 second that was almost perfectly smooth. If it were not for a slight fluctuation in the density distribution of matter, theorists contend, galaxies would have been unable to form (Parker).

The universe at this point was an ionized plasma where matter and radiation were inseparable. Additionally there were equal amounts of particles and antiparticles. The ratio of neutrons and protons albeit small is equal. When the universe aged to one hundredth of a second old neutrons begin to decay on a massive scale. This allows for free electrons and protons to combine with other particles. Eventually the remaining neutrons combine with protons to form heavy hydrogen (deuterium). These deuterium nuclei combine in pairs and form helium nuclei. The formation of matter from energy is made possible by photons materializing into baryons and antibaryons with their subsequent annihilations transforming them into pure energy (Maffei). Because of these collisions and annihilations matter was unable to remain viable for more than a few nanoseconds before a bombardment of electrons would scatter these photons. Like water trapped inside a sponge, radiation is so dense (1014g/cm3) that no light is visible. Known as the "Epoch of Last Scattering" the temperature has now dropped to a mere 1013K with the Strong Nuclear, Weak Nuclear and Electromagnetic interactions now able to exert their force. (Chown)

As the gas cloud expands one full second after the initial explosion and the temperature of our Universe has dropped to ten billion degrees, photons no longer have the energy to disrupt the creation of matter as well as transform energy into matter. After three minutes and a temperature of one billion degrees, protons and neutrons were slowing down enough in order to allow nucleosynthesis to take place. Atomic nuclei of helium was produced as two protons and neutrons each bonded. For every helium nuclei formed there were about ten protons left over allowing for twenty-five percent of the Universe to be comprised of helium. The next important phase of the expansion occurred around thirty minutes later when the creation of photons increased through the annihilation of electron-positron pairs. The fact that the universe began with slightly more electrons than positrons has insured that our Universe was able to form the way it has (Parker).

 

The universe for the next 300,000 years will then begin to expand and cool to a temperature of 10,000°K. These conditions allowed for helium nuclei to absorb free floating electrons and form helium atoms. Meanwhile hydrogen atoms were bonding together and forming lithium. It is here that the density of the universe has expanded to the point where light can be perceived. Until this point photons continued to be trapped within matter. Finally the expansion allowed for light and matter to go there separate ways as radiation becomes less and less dense. Matter and radiation therefore too, were bonded no longer and the oldest fossils in the Universe were born (Peebles).

Limitations of this theory

The Big Bang theory makes definite predictions for the structure and evolution of the universe that depend on the nature and amount of matter in the universe.The Big Bang theory makes no attempt to explain how structures like stars and galaxies came to exist in the universe.

 

Steady State Theory

This theory is a concept of an expanding universe whose average density remains constant, matter being continuously created throughout it to form new stars and galaxies at the same rate that old ones recede from sight. A steady-state universe has no beginning or end, and its average density and arrangement of galaxies are the same as seen from every point. Galaxies of all ages are intermingled. The theory was first put forward by William Macmillan (1861 – 1948) in the 1920s and modified by Fred Hoyle to deal with problems that had arisen in connection with the big-bang model. Much evidence obtained since the 1950s contradicts the steady-state theory and supports the big-bang model.

The steady state theory of Bondi, Gold and Hoyle was inspired by the circular plot of the film Dead of Night they watched together[1]. Further theoretical calculations that showed that a static universe was impossible under general relativity and observations by Edwin Hubble that the universe was expanding. The steady state theory asserts that although the universe is expanding, it nevertheless does not change its look over time (the perfect cosmological principle); it has no beginning and no end.

The steady state theory requires that new matter must be continuously created (mostly as hydrogen) to keep the average density of matter equal over time. The amount required is low and not directly detectable: roughly one solar mass of baryons per cubic megaparsec per year or roughly one hydrogen atom per cubic meter per billion years, with roughly five times as much dark matter. Such a creation rate would, however, cause observable effects on cosmological scales.

An aesthetically unattractive feature of the theory is that the postulated spontaneous new matter formation would presumably need to include deuterium, helium, and a small amount of lithium, as well as regular hydrogen, since no mechanism of nucleosynthesis in stars or by other processes accounts for the observed abundance of deuterium and helium-3. [In the Big Bang model, primordial deuterium is made directly after the "bang," before the existence of the first stars].

Problems


Problems with the steady-state theory began to emerge in the late 1960s, when observations apparently supported the idea that the universe was in fact changing: quasars and radio galaxies were found only at large distances (i.e., redshift, and thus, because of the finiteness of the speed of light, in the past), not in closer galaxies. Halton Arp, also since the 1960s, has been taking a different view of the data, claiming that evidence can also point to quasars existing as close as the local Virgo cluster; however, this theory is not accepted by mainstream scientists today.

For most cosmologists, the refutation of the steady-state theory came with the discovery of the cosmic background radiation in 1965, which was predicted by the big bang theory. Stephen Hawking said that the fact that microwave radiation had been found, and that it was thought to be left over from the big bang, was "the final nail in the coffin of the steady-state theory." Within the steady state theory this background radiation is the result of light from ancient stars which has been scattered by galactic dust. However, this explanation has been unconvincing to most cosmologists as the cosmic microwave background is very smooth, making it difficult to explain how it arose from point sources, and the microwave background shows no evidence of features such as polarization which are normally associated with scattering. Furthermore, its spectrum is so close to that of an ideal black body that it could hardly be formed by the superposition of contributions from dust clumps at different temperatures as well as at different redshifts. Steven Weinberg wrote in 1972.

About | Contact Us | ©2008